
Partial Derivatives

1 Functions of two or more variables

In many situations a quantity (variable) of interest depends on two or

more other quantities (variables), e.g.

h

b

Figure 1: b is the base length of the triangle, h is the height of the triangle, H is the height of
the cylinder.

The area of the triangle and the base of the cylinder: A = 1
2bh

The volume of the cylinder: V = AH = 1
2bhH

The arithmetic average x̄ of n real numbers x1, . . . , xn

x̄ =
1

n
(x1 + x2 + · · · + xn)

We say

A is a function of the two variables b and h.

V is a function of the three variables b, h and H .

x̄ is a function of the n variables x1, ..., xn.
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The expression z = f (x, y) means that z is a function of x and y;

w = f (x, y, z); u = f (x1, x2, . . . , xn).

zx

y

(x,y) f

x

z

y w

f(x,y,z)

Figure 2: A function f assigns a unique number z = f (x, y), or w =

f (x, y, z) to a point in (x, y)-plane or (x, y, z)-space.

The independent variables of a function may be restricted to lie in

some set D which we call the domain of f , and denote D(f ). The

natural domain consists of all points for which a function defined

by a formula gives a real number.

Definition. A function f of two variables, x and y, is a rule that

assigns a unique real number f (x, y) to each point (x, y) in some set

D in the xy-plane.

A function f of n variables, x1, ..., xn, is a rule that assigns a unique

real number f (x1, ..., xn) to each point (x1, ..., xn) in some set D in

the n-dimensional x1...xn-space, denoted Rn.

Definition. The graph of a function z = f (x, y) in xyz-space is a

set of points P =
(
x, y, f (x, y)

)
where (x, y) belong to D(f ).

In general such a graph is a surface in 3-space.
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Examples. Find the natural domain of f , identify the graph of f as

a surface in 3-space and sketch it.

1. f (x, y) = 0;

2. f (x, y) = 1;

3. f (x, y) = x;

4. f (x, y) = ax + by + c;

5. f (x, y) = x2 + y2;

6. f (x, y) =
√

1− x2 − y2;

7. f (x, y) =
√

1 + x2 + y2;

8. f (x, y) =
√
x2 + y2 − 1;

9. f (x, y) = −
√
x2 + y2;
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2 Level curves

If z = f (x, y) is cut by z = k, then at all points on the intersection we

have f (x, y) = k.

This defines a curve in the xy-plane which is the projection of the in-

tersection onto the xy-plane, and is called the level curve of height

k or the level curve with constant k.

A set of level curves for z = f (x, y) is called a contour plot or

contour map of f .
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Examples.

1. f (x, y) = ax + by + c;

2. f (x, y) = x2 + y2;

3. f (x, y) =
√

1− x2 − y2;

4. f (x, y) =
√

1 + x2 + y2;

5. f (x, y) =
√
x2 + y2 − 1;

6. f (x, y) = −
√
x2 + y2;

7. f (x, y) = y2−x2. It is the hyperbolic paraboloid (saddle surface).

Figure 3: The hyperbolic paraboloid and its contour map.
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There is no “direct” way to graph a function of three variables. The

graph would be a curved 3-dimensional space ( a 3-dim manifold if it

is smooth), in 4-space. But f (x, y, z) = k defines a surface in 3-space

which we call the level surface with constant k.

Examples.

1. f (x, y, z) = x2 + y2 + z2;

2. f (x, y, z) = z2 − x2 − y2;

Figure 4: Level surfaces of f (x, y, z) = z2 − x2 − y2

6



3 Limits and Continuity

a

f(x)
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There are two one-sided limits for y = f (x).

(a,b)
C1

C2

C3

C4

C5

C6 (x,y)
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y

For z = f (x, y) there are infinitely many curves along which one can

approach (a, b).

This leads to the notion of the limit of f (x, y) along a curve C.

If all these limits coincide then f (x, y) has a limit at (a, b), and the

limit is equal to f (a, b) then f is continuous at (a, b).
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4 Partial Derivatives

Recall that for a function f (x) of a single variable the derivative of f

at x = a

f ′(a) = lim
h→0

f (a + h)− f (a)

h
is the instantaneous rate of change of f at a, and is equal to the slope

of the tangent line to the graph of f (x) at (a, f (a)).

a

(a,f(a))

f(x)

x

y

Figure 5: Equation of the tangent line: y = f (a) + f ′(a)(x− a).

Consider f (x, y). If we fix y = b where b is a number from the domain

of f then f (x, b) is a function of a single variable x and we can calculate

its derivative at some x = a. This derivative is called the partial

derivative of f (x, y) with respect to x at (a, b) and is denoted by

fx(a, b) or by
∂f (a, b)

∂x

fx(a, b) =
∂f (a, b)

∂x
=

d

dx

[
f (x, b)

]∣∣∣
x=a

= lim
h→0

f (a + h, b)− f (a, b)

h

If f (x, y) = x then
∂x

∂x
= 1 , and if f (x, y) = y then

∂y

∂x
= 0
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Geometrically, given the surface z = f (x, y), we consider its intersec-

tion with the plane y = b which is a curve. This curve is the graph of

the function f (x, b), and therefore the partial derivative fx(a, b) is the

slope of the tangent line to the curve at (a, b, f (a, b))

Equation of the tangent line: x = t, y = b, z = f (a, b)+fx(a, b)(t−a)

We call fx(a, b) the slope of the surface in the x-direction at

(a, b)
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Similarly, if we fix x = a where a is a number from the domain of f

then f (a, y) is a function of a single variable y and we can calculate

its derivative at some y = b. This derivative is called the partial

derivative of f (x, y) with respect to y at (a, b) and is denoted by

fy(a, b) or by
∂f (a, b)

∂y

fy(a, b) =
∂f (a, b)

∂y
=

d

dy

[
f (a, y)

]∣∣∣
y=b

= lim
h→0

f (a, b + h)− f (a, b)

h

If f (x, y) = x then
∂x

∂y
= 0 , and if f (x, y) = y then

∂y

∂y
= 1

The intersection of the surface z = f (x, y) with the plane x = a is

a curve which is the graph of the function f (a, y), and therefore the

partial derivative fy(a, b) is the slope of the tangent line to the curve

at (a, b, f (a, b))

Equation of the tangent line: x = a, y = t, z = f (a, b)+fy(a, b)(t−a)

We call fy(a, b) the slope of the surface in the y-direction at

(a, b)
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If we allow (a, b) to vary, the partial derivatives become functions of

two variables:

a→ x , b→ y and fx(a, b)→ fx(x, y), fy(a, b)→ fy(x, y)

fx(x, y) = lim
h→0

f (x + h, y)− f (x, y)

h
, fy(x, y) = lim

h→0

f (x, y + h)− f (x, y)

h

Partial derivative notation: if z = f (x, y) then

fx =
∂f

∂x
=
∂z

∂x
= ∂xf = ∂xz , fy =

∂f

∂y
=
∂z

∂y
= ∂yf = ∂yz

Example.

z = f (x, y) = ln
3
√

2x2 − 3xy2 + 3 cos(2x + 3y)− 3y3 + 18

2

Find fx(x, y), fy(x, y), f (3,−2), fx(3,−2), fy(3,−2)

Forw = f (x, y, z) there are three partial derivatives fx(x, y, z), fy(x, y, z),

fz(x, y, z)

Example.

f (x, y, z) =
√
z2 + y − x + 2 cos(3x− 2y)

Find

fx(x, y, z), fy(x, y, z), fz(x, y, z),

f (2, 3,−1), fx(2, 3,−1), fy(2, 3,−1), fz(2, 3,−1)
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In general, for w = f (x1, x2, . . . , xn) there are n partial derivatives:

∂w

∂x1
,

∂w

∂x2
, . . . ,

∂w

∂xn

Example.

r =
√
x2

1 + x2
2 + · · · + x2

n

Find

∂r

∂x1
,

∂r

∂x2
,

∂r

∂x9
,

∂r

∂xi
,

∂r

∂xn−1
, n ≥ 9 , i ≤ n

Second-order derivatives: fxx, fxy, fyx, fyy

f

fxx
↗

fx → fxy
↗
↘

fy → fyx
↘

fyy

Notation

fxx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
, fxy =

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
fyx =

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
, fyy =

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
fxy and fyx are called the mixed second-order partial

derivatives. fx and fy can be called first-order partial derivative.
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Example.

z = 2ey−
π
2 sinx− 3ex−

π
4 cos y

Find
∂z

∂x
,

∂z

∂y
,

∂2z

∂x2
,

∂2z

∂x∂y
,

∂2z

∂y2
,

∂2z

∂y∂x
,

∂z

∂x
(
π

4
,
π

2
) ,

∂z

∂y
(
π

4
,
π

2
) ,

∂2z

∂x∂y
(
π

4
,
π

2
) ,

∂2z

∂y∂x
(
π

4
,
π

2
)

Equality of mixed partial derivatives

Theorem. Let f be a function of two variables. If fxy and fyx are

continuous on some open disc, then fxy = fyx on that disc.

Higher-order derivatives

Third-order, fourth-order, and higher-order derivatives are obtained by

successive differentiation.

fxxx =
∂3f

∂x3
=

∂

∂x

(
∂2f

∂x2

)
, fxyy =

∂3f

∂y2∂x
=

∂

∂y

(
∂2f

∂y∂x

)
fxyxz =

∂4f

∂z∂x∂y∂x
=

∂

∂z

(
∂3f

∂x∂y∂x

)

For higher-order derivatives the equality of mixed partial derivatives

also holds if the derivatives are continuous.

In what follows we always assume that the order of partial derivatives

is irrelevant for functions of any number of independent variables.
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5 Differentiability, differentials and local linearity

For f (x, y), the symbol ∆f , called the increment of f , denotes the

change

∆f = f (a + ∆x, b + ∆y)− f (a, b)

For small ∆x, ∆y

∆f ≈ fx(a, b)∆x + fy(a, b)∆y

Definition. A function f (x, y) is said to be differentiable at (a, b)

provided fx(a, b) and fy(a, b) both exist and

lim
(∆x,∆y)→(0,0)

∆f − fx(a, b)∆x− fy(a, b)∆y√
(∆x)2 + (∆y)2

= 0

For f (x, y, z)

∆f = f (a + ∆x, b + ∆y, c + ∆z)− f (a, b, c)

For small ∆x, ∆y, ∆z

∆f ≈ fx(a, b, c)∆x + fy(a, b, c)∆y + fz(a, b, c)∆z

and f (x, y, z) is differentiable at (a, b, c) if

lim
(∆x,∆y,∆z)→(0,0,0)

∆f − fx(a, b, c)∆x− fy(a, b, c)∆y − fz(a, b, c)∆z√
(∆x)2 + (∆y)2 + +(∆z)2

= 0

Theorem. If a function is differentiable at a point, then it is contin-

uous at that point.

Theorem. If all first-order derivatives of f exist and are continuous

at a point, then f is differentiable at a point.
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Differentials

If z = f (x, y) is differentiable at (a, b) we let

dz = fx(a, b)dx + fy(a, b)dy

denote a new function with dependent variable dz and independent

variables dx, dy. It is called the total differential of z (or f) at

(a, b). It is a linear function of dx and dy.

Note that ∆z ≈ dz if ∆x = dx and ∆y = dy

If we allow (a, b) to vary, the differential becomes a function of four

variables, dx, dy, x, y:

a→ x , b→ y ⇒ dz = fx(x, y)dx + fy(x, y)dy

Definition. If f (x, y) is differentiable at (a, b) then

L(x, y) = f (a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)
is called the local linear approximation of f at (a, b).

Its graph is the tangent plane to the surface z = f (x, y) at (a, b, f (a, b))

Example. f (x, y) =
√
x2 + y2. Compute f (3.04, 3.98), and esti-

mate the error if a calculator gives f (3.04, 3.98) ≈ 5.00819

If w = f (x, y, z), the total differential of w (or f ) at (a, b, c) is

dw = fx(a, b, c)dx + fy(a, b, c)dy + fz(a, b, c)dz

or if a→ x , b→ y , c→ z

dw = fx(x, y, z)dx + fy(x, y, z)dy + fz(x, y, z)dz

The local linear approximation of f at (a, b, c) is

L(x, y, z) = f (a, b, c)+fx(a, b, c)(x−a)+fy(a, b, c)(y−b)+fz(a, b, c)(z−c)
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6 The Chain Rule

Recall

y = f (x(t)) ⇒ dy

dt
=
dy

dx

dx

dt
because

∆y ≈ dy

dx
∆x , ∆x ≈ dx

dt
∆t

Let z = f (x, y) and x = x(t), y = y(t). Then z = f (x(t), y(t)) is a

function of the single variable t.

∆z ≈ ∂z

∂x
∆x +

∂z

∂y
∆y , ∆x ≈ dx

dt
∆t , ∆y ≈ dy

dt
∆t

and therefore
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

Example. z =
√

4− x2 − y2, x = 1 + cos t, y = sin t
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Similarly, if w = f (x, y, z) and x = x(t), y = y(t), z = z(t). Then

w = f (x(t), y(t), z(t)) is a function of the single variable t, and

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

In general, if w = f (x1, x2, . . . , xn) and x1 = x1(t), x2 = x2(t), ... ,

xn = xn(t), then

dw

dt
=
∂w

∂x1

dx1

dt
+
∂w

∂x2

dx2

dt
+ · · · ∂w

∂xn

dxn
dt

=

n∑
i=1

∂w

∂xi

dxi
dt

Implicit differentiation

Let z = f (x, y) and y = y(x). Then

dz

dx
=
∂f

∂x

dx

dx
+
∂f

∂y

dy

dx
=
∂f

∂x
+
∂f

∂y

dy

dx

Suppose y(x) is such that f (x, y(x)) = const. Then, dz
dx = 0 and

∂f

∂x
+
∂f

∂y

dy

dx
= 0 ⇒ dy

dx
= −fx

fy
if fy 6= 0

Example. The lemniscate is defined by the equation

(x2 + y2)2 = 2a2(x2 − y2) -2 -1 0 1 2

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Find dy/dx.
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The chain rule for partial derivatives

1. Let y = f (x) and x = x(u, v)

Then y = f (x(u, v)) is a function of u and v, and

∆y ≈ dy

dx
∆x , ∆x ≈ ∂x

∂u
∆u +

∂x

∂v
∆v

Thus,
∂y

∂u
=
dy

dx

∂x

∂u
,

∂y

∂v
=
dy

dx

∂x

∂v

2. Let z = f (x, y) and x = x(u, v), y = y(u, v)

Then x = f (x(u, v), y(u, v) is a function of u and v, and

∆z ≈ ∂z

∂x
∆x+

∂z

∂y
∆y , ∆x ≈ ∂x

∂u
∆u+

∂x

∂v
∆v , ∆y ≈ ∂y

∂u
∆u+

∂y

∂v
∆v

Thus,

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
,

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v

3. Let w = f (x, y, z) and x = x(u, v), y = y(u, v), z = z(u, v)

∂w

∂u
=
∂w

∂x

∂x

∂u
+
∂w

∂y

∂y

∂u
+
∂w

∂z

∂z

∂u
,

∂w

∂v
=
∂w

∂x

∂x

∂v
+
∂w

∂y

∂y

∂v
+
∂w

∂z

∂z

∂v

4. Letw = f (x1, ..., xn) and x1 = x1(u1, ..., um), ... , xn = xn(u1, ..., um)

∂w

∂uα
=

n∑
i=1

∂w

∂xi

∂xi
∂uα

, α = 1, . . . ,m
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Example. Find ∂z
∂u and ∂z

∂v where

z = cos
x

2
sin 2y ; x = 3u− 2v , y = u2 − 2v3

Example. The wave equation: Consider a string of length L that is

stretched taut between x = 0 and x = L on an x-axis, and suppose

that the string is set into vibratory motion by “plucking” it at time

t = 0. The displacement of a point on the string depends both on x

and t: u(x, t). One-dimensional wave equation for small displacements

∂2u

∂t2
− c2∂

2u

∂x2
= 0

Show that

u(x, t) = f (x− ct) + g(x + ct)

is a solution to the equation. In fact it is the general solution.
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